
Improving Performance of All-to-All,
Random Pair, and Nearest-Neighbor

Communication on Blue Waters

February 27, 2012

R. Fiedler

PRAC Applications Analyst

2/27/2013
1

Part 1: All-to-All & Random Pair
Communication

2/27/2013 Cray Inc. Proprietary NDA
2

Background

2/27/2013

BW Interconnect
● Topology is 23x24x24 gemini

hubs
● 2 nodes per gemini
● 8x8x24 XK geminis (red)
● Service nodes randomly

distributed (yellow)
● Y-links between geminis

have 1/2 bandwidth of X- or
Z-links
● 2 geminis on same board have

2X faster links in Y than Y-links
between boards

● 2 nodes on same gemini don’t
use interconnect to exchange
messages

● Routing algorithm is X, then
Y, then Z

3

Background

2/27/2013

● Routing takes shortest

path

● If using > 1/2 of nodes in a

given dimension, some

communication may wrap

around the torus through

nodes not assigned to job

● Jobs share interconnect

for application

communication, IO

● Run times affected by task

placement, other running

jobs

4

Task Placement and Interference

2/27/2013

● Applications that perform more

communication are more sensitive to

placement and interference

● Applications with All-to-All communication

patterns compete more with other jobs

● Applications with only nearest-neighbor

communication in their virtual topology, if

poorly placed, actually perform pairwise

communication between randomly located

nodes

● Thus, analysis below of bisection bandwidth for All-

to-All is relevant to many types of applications

5

Optimal

Poor

Bisection Bandwidth

2/27/2013

● Bisection bandwidth of nodes in use determines run time

for All-to-All

● Bisection bandwidth is defined as lowest bandwidth

through any cross-sectional area

● BW topology is 23x24x24 geminis

● Bisection bandwidth through cross section:

● Normal to X: 24x24*X-link-bw*2 for torus

● Normal to Y: 23x24*Y-link-bw*2 for torus

● Normal to Z: 23x24*Z-link-bw*2 for tours

● Y-link bandwidth ~ 1/2 X-link or Z-link bandwidth

● Bisection bandwidth normal to Y ~ 23x24*Z-link-bw, limits All-to-All

y

6

Bisection Bandwidth

2/27/2013

1-D torus vs. 1-D mesh

 0 1 2 3 4 5 6
 --------*----*----*----*----*
 |__________________|

● Suppose each node sends different messages to all other
nodes

● Can send multiple messages simultaneously on each
connected link

● Mesh: 1 path connects nodes 0 and 6 through other nodes.

● Torus: 1 path connects to 3 nodes on right, another path
connects to 3 nodes on left
● Thus, torus has twice the bisection bandwidth of mesh

● All-to-All is 2X faster for torus

7

Bisection Bandwidth

2/27/2013

1-D torus vs. 1-D mesh

 0 1 2 3 4 5 6

 .----.----*----*----*----*----*

 |__________________|

● If not all nodes participate in all-to-all, torus bandwidth < 2X

mesh bandwidth

● E.g., nodes 0 and 1 not assigned to job but relaying messages

● Node 2 reaches node 6 in 3 hops through nodes 1 and 0 for torus

● Messages to/from nodes 3, 4, 5 to any other node don’t benefit from

torus

● Only 1 of 4 messages sent by node 2 uses link between nodes 2 and 1

● Torus All-to-All takes 3/4 of time for mesh All-to-All, not 1/2

8

● Consider subset of nodes: 23x6x24

● Contains ¼ of all nodes

● Bisection bandwidth through cross section:

● Normal to X: 6*24*X-link-bw*2 for torus ~ 12x24*Z-link-bw

● Normal to Y: 23x24*Y-link-bw ~ 23x12*Z-link-bw

● Normal to Z: 23x6*Z-link-bw*2 for tours = 23x12 Z-link-bw

● Bisection bandwidth normal to Y ~ EQUALS that of other

directions

● Bisection bandwidth for this subset is ~1/2 of bisection

bandwidth for full system

● Gives highest possible bandwidth per node for All-to-All

communication

Bisection Bandwidth

2/27/2013
9

Bisection Bandwidth

2/27/2013

● 23x6x24 gemini subsection best for ~ 6k nodes
● 23x4x24 best for ~ 4k nodes

● Consider smaller node counts, e.g., 11x6x12 so no
wrapping around torus (shortest route is used)
● 1584 nodes, ~1/16 of all nodes in system

● Bisection bandwidth through cross section:
● Normal to X: 6*12*X-link-bw ~ 12*6*Z-link-bw

● Normal to Y: 11*12*Y-link-bw ~ 11*6*Z-link-bw

● Normal to Z: 11*6*Z-link-bw = 11*6 Z-link-bw

● Bisection bandwidth normal to Y ~ EQUALS that of other
directions

● Bisection bandwidth for subset ~ 1/8 of bisection
bandwidth for full system
● Again gives maximum bandwidth per node for All-to-All

communication

10

PSDNS Turbulence Application

2/27/2013

CFD Using Pseudo-Spectral Method
● Uses 3D FFTs of fluid variables to compute spatial

derivatives
● Implementation uses 2D pencil decomposition
● For 3D FFT, must transpose full 3D arrays twice:

● Begin with partitions spanning domain in X

● 1D FFTs along X

● Transpose within XY planes so each partition spans
domain in Y

● 1D FFTs along Y

● Transpose within XZ planes so each partition spans
domain in Z

● 1D FFTs along Z

● After some calculations requiring no
communication, inverse 3D FFTs are performed in
similar fashion
● Dozens of forward and inverse 3D FFTs per time step

● Transposes comprise 50-75% of run time

 11

PSDNS Turbulence Application

2/27/2013

Improving Transposes, I

● Transposes require All-to-All communication
within each row (column) of pencils
● Multiple concurrent All-to-Alls on all rows

(columns), not global All-to-All

● Optimization: Eliminate inter-nodal
communication for XY transposes
● Place 1 or more full XY planes of domain per node

● Each node has an entire row (16 or 32) of pencils

● In benchmark runs with a 6k^3 grid on 3072
nodes, this strategy reduced the overall run
time by up to ~35%

● Possible to place 1 XY plane per gemini
(node pair), but must ensure both nodes are
up on all geminis used (later)

12

PSDNS Turbulence Application

2/28/2013

Improving Transposes, II

● YZ Transposes require off-node communication

● One process per node in each column communicator

● Communication time depends on effective All-to-All bandwidth for

nodes in job, plus any additional nodes relaying messages

● Can be << global, system-wide All-to-All bandwidth

● Two approaches to increasing effective All-to-all

bandwidth via placement

1. Request specific nodes & wait – works in shared mode (later)

● qsub -l hostlist=`cat node_list | sed -e 's/-/+/g' | sed -e 's/,/+/g'` job_script

2. Run on a randomly distributed (spread out) set of nodes

● Most useful on dedicated system (or reservation)

● For a 6k^3 grid on 3072 nodes of ESS (~4k nodes total), this strategy

reduced the overall run time by ~21%

13

Sensitivity to Placement

● 6144 XE nodes, 8 non-IO steps, 2 IO steps

● 6k-node job in 6x24x24 XE Region

● Ave max time per non-IO step: 35.3 s

● Ave max time per IO step: 67.9 s

● 6k-node job in 23x6x24 XE region

● Ave max time per non-IO step: 21.5 s

● Ave max time per IO step: 48.0 s

● Slab normal to X takes 1.64X (1.41X for IO)

longer than slab normal to Y

PSDNS Turbulence Application

2/27/2013

X

Y

Z

14

PSDNS Turbulence Application

2/27/2013

Ensuring both nodes on each gemini are up

● Request a few (~0.5%?) more nodes than needed
by job

● At run time in batch script
● Get the list of nodes in reservation:

checkjob --xml $PBS_JOBID | perl -e 'while(<>){if
(/AllocNodeList=\"([0-9:,]*)/){$n=$1;$n =~ s/:\d+//g;print
"$n\n";}}‘ > node_list

● Node IDs on same gemini are consecutive even-odd
integers

● Randomization script (later) can eliminate nodes with
down partners:

cat node_list | randomize.pl --block=2 > random_nodes
aprun –l random_nodes …

● Randomizing node list useful for random-pairs, too

15

PSDNS Turbulence Application

2/27/2013

Improving Transposes, III

● Replace calls to MPI_AlltoAll with library routine in co-
array Fortran (CAF)
● CAF has one-sided communication, lower latency, smaller headers

● Library routine copies messages to/from 4 MB statically allocated co-
array “bucket” on each image

● Breaks messages into 512 B chunks

● Pulls chunks from other images in a different random order for each
image

● Reduces network congestion

● Reduces length of time links are devoted to a given message

● Tunable for specific application – source available

● Saves source/target info and random orderings for the row and column
communicators

● Reduces the overall run time by ~33% on 4096 nodes

16

PSDNS Turbulence Application

2/27/2013

CAF Integration

 #ifdef CAF

 call compi_alltoall(sendbuf,recvbuf,items,mpi_comm_col)

#else

 call mpi_alltoall(sendbuf,items,mpi_byte,

 & recvbuf,items,mpi_byte,mpi_comm_col,ierr)

#endif

● compi_alltoallv also available, nearly as efficient

17

PSDNS Turbulence Application

2/27/2013

Improving “Compute” Time

● PSDNS allocates/deallocates buffer arrays for

communication every time it performs All-to-All operations

● For PGI (maybe GNU) compiler, a 10-20% improvement in

run time was obtained by setting environment variables:

● MALLOC_MMAP_MAX_=0

● MALLOC_TRIM_THRESHOLD_=512MiB

● Cray compiler by default manages memory better, so

setting these variables does not help

● Avoiding repeated allocation/deallocation of the same

arrays may reduce overhead for many applications

18

Part 2: Nearest-Neighbor Communication

2/27/2013 Cray Inc. Proprietary NDA
19

Virtual Topologies and Task Placement

2/27/2013

● Many applications define Cartesian grid virtual topologies

● MPI_CartCreate

● Roll your own (i, j, …) virtual coordinates for each rank

● Craypat rank placement

● Automatic generation of rank order based on detected grid topology

● grid_order tool

● User specifies virtual topology to obtain rank order file

● Node list by default is in whatever order ALPS/MOAB provide

● These tools can be very helpful in reducing off-node

communication, but they do not explicitly place

neighboring groups of partitions in virtual topology onto

neighboring nodes in torus

20

Examples: 2D Virtual topology

2/27/2013
21

grid_order –C –c 4,2 –g 8,8

● Ranks ordered with 1st dim
changing fastest (column
major, like Fortran)

● Nodes get 4x2 partitions

● Rank order is
● 0,1,2,3,8,9,10,11 on 1st node

● 4,5,6,7,12,13,14,15 on 2nd

● Node pair is 8x2

grid_order –R –c 4,2 –g 8,8

● Ranks ordered with 2nd dim
changing fastest

● Rank order is
● 0,1,8,9,16,17,24,25 on 1st node

● 2,3,10,11,18,19,26,27 on 2nd

● Node pair is 4x4

16 18 19 20 21 22 23 17

24 26 27 28 29 30 31 25

32 34 35 36 37 38 39 33

40 42 43 44 45 46 47 41

48 50 51 52 53 54 55 49

56 58 59 60 61 62 63 57

8 10 11 12 13 14 15 9

1 0 2 3 4 5 6 7

Examples: 2D Virtual Topology

2/27/2013
22

WRF

● 2D mesh, 6075x6075

cells

● 4560 nodes, 16 tasks

per node, 72960 tasks

● 2 OpenMP threads

● Found best

performance with

grid_order -C -c 2,8 -g

190,384

● Node pair is 4x8

● ~18% speedup over

SMP ordering

Examples: 3D Cubed Sphere

2/27/2013
23

SPECFEM3D_GLOBE

● Quad element unstructured grid

● 5419 nodes, 32 tasks per node

● Craypat detected a 1020x170 grid

pattern (8 less than # tasks)

● On-node 81% of total B/task w/Custom

● On-node 48% of total B/task w/SMP

● Found best performance with

grid_order –R -c 4,1 -g 1020,170

● Each node gets eight 4x1 patches

● Also tried –c 8,2, etc.

● 16% speedup over SMP ordering

Examples: 4D Virtual Topology

2/27/2013
24

MILC

● 4D Lattice, 84x84x84x144

● 4116 nodes, 16 tasks per node, 65856 tasks

● 6x6x6x6 lattice points per task

● Found best performance with

grid_order –R -c 2,2,2,2 -g 14,14,14,24

● 1.9X speedup over SMP ordering!

● Difficult to map 4D virtual topology onto 3D torus using 2x2x2x2

● Possible to improve performance further by selecting which nodes to

use (later)

Choosing Tile Sizes

2/27/2013

● Consider applications that perform nearest-neighbor

communication in a 3D virtual Cartesian grid

● Assume same amount of communication in each direction

● Communication time for halo exchange ~

tile_face_area / link_bandwidth

● Cubic tile: same area normal to all 3 directions

● T_comm_cubic_x ~ tile_face_area / X-link-bw

● T_comm_cubic_y ~ tile_face_area / Y-link-bw

● T_comm_cubic_z ~ tile_face_area / Z-link_bw

● Longest time is T_comm_cubic_y, by a factor of ~ 2

● Limits performance if 3 directions done concurrently:

● T_comm_cubic = L^2/Y-link-bw = 2 * T_comm_cubic_x

● If directions must be done in sequence

● T_comm_cubic ~ 4* T_comm_cubic_x

25

Choosing Tile Sizes

2/27/2013

● Elongated tile: assume same volume as cubic tile, but
different face areas in different directions
● T_comm_x ~ X_face_area / X-link_bw

● T_comm_y ~ Y_face_area / Y-link_bw

● T_comm_z ~ Z_face_area / Z-link_bw

● These three times are equal if
● X_face_area = Z_face_area = 2*Y_face_area

● L_y = 2 * L_x

● V = L^3 from cubic case  L_x = L / 2^(1/3)

● T_comm_x = 2^(1/3) T_comm_cubic_x

● If communication for all 3 directions concurrent
● T_comm = T_comm_cubic * 2^(1/3) / 2 = 0.63 * T_comm_cubic

● If 3 directions done in sequence
● T_comm_seq = T_comm_cubic_seq * 2^(1/3) * (3/4)

 = 0.945 * T_comm_cubic_seq

● Bottom line: If possible, do all 3 directions concurrently
and use tiles with 2X more cells along Y

26

Choosing Tile Sizes

2/27/2013

Example: tile size for cubic grid

● Global mesh with 1024^3 zones, 32x32x32 partitions

● Each node has 16 compute units, 32 integer cores

● To get cubic tiles
● Could have 2x2x2 partitions per node (w/ 2 or 4 OpenMP threads)

● Could have 4x4x4 partitions per node pair, single threaded

● But neither of these take slower y-links into account

● To get 2X more points along y  1/2 as many y-partitions
● Partition global mesh with 1000^3 zones as 40x20x40

● Each partition has 25x50x25 mesh zones

● Could have 4x2x4 partitions per node, single threaded

● Could have 4x2x4 partitions per node pair (both partners up)

● 2x2x4, 4x2x2, or 4x1x4 partitions per node (different rank orders)

● Nearly 1.6X faster halo exchanges than 32^3 partition case, provided
communication is done over all 3 dimensions at once

● Only 6% improvement if exchanges are done 1 dimension at a time

 27

● Very desirable to place tiles on any given set

of nodes so that virtual neighbors are nearby

on torus

● Difficult problem for arbitrary node lists

● If application uses most nodes in a reservation with a

specified node list, then can apply existing Topaware

tool (later)

● Ensures neighboring tiles are placed on nearby nodes in

torus

● Takes into account presence of service nodes

● Enabling Topaware to place tiles that should be

neighbors close together on the torus in shared batch

mode is under investigation

Selecting Nodes to Use

2/27/2013
28

Optimal

Poor

Motivation for Developing Topaware

2/27/2013

● Applications that perform mainly nearest-neighbor

communication on a 3D mesh should weak scale linearly

on a 3D torus interconnect.

● Such apps should map nicely to a 3D torus, but service

nodes scattered throughout the system impede finding a

good mapping even on a dedicated system.

● As a result, halo exchanges can take considerably more

time than models predict.

29

Topaware Node Selection Scheme

2/27/2013
30

● Most rows and columns

have 0 or 1 service node

(green)

● Can fit up to a 7x7

gemini plane onto this

8x8 section of torus

● This mapping selects 7

geminis in the same

rows they would have

w/o service nodes

● All selected geminis are

also in the same plane

as w/o service nodes

2 1 3 4 5 6 7 8

1 2 3 4 5 6 7

2 1 3 4 5 6 7

2 1 3 4 5 6 7 8

2 1 3 4 5 6 7

2 1 3 4 5 6 7

2 1 3 4 5 6 7 8

2 1 3 4 5 6 7

Extra hops for up/down exchange

2/27/2013
31

● About half of the hubs

require a second hop to

reach North neighbor

● Density of double hops

does not increase with

scale, nor does # hops

● Should enable nearly

ideal weak scaling,

despite extra hops

2 1 3 4 5 6 7 8

1 2 3 4 5 6 7

2 1 3 4 5 6 7

2 1 3 4 5 6 7 8

2 1 3 4 5 6 7

2 1 3 4 5 6 7

2 1 3 4 5 6 7 8

2 1 3 4 5 6 7

Results on Blue Waters for MILC

2/27/2013

● Lattice Quantum Chromodynamics

● 4D Lattice, 128x128x128x192

● 8192 nodes, 32 tasks per node, 262144 tasks

● 1x1x1x32 lattice points per task

● Placed entire 4th dimension on each node, mapped remaining 3

dimensions like a 3D virtual topology

● 3.7X faster than default placement

● 1.9X faster than when using grid_order –c 2x2x2x2 …

32

Results on Titan for S3D

2/27/2013

● Fluid dynamics w/ combustion

● 3D Virtual topology

● Ran on ~12900 nodes in dedicated mode

● Up to 40% faster than default placement

33

Results on Blue Waters for VPIC SPP test

2/27/2013

● Plasma physics

● 3D virtual topology

● On 2k nodes, this code spends 8% of run time on

communication

● Ran on 4608 nodes in dedicated mode

● Best results: 5% faster than default placement

34

Results on Blue Waters for WRF SPP test

2/27/2013

● Weather forecasting

● 2D virtual topology

● 2D domain is folded like a sheet of paper

● No tearing – keeps neighbors together – complicates rank ordering

● Folded in half along one dimension, then 3 times in the other

(accordion style) to map 8 super-tiles onto 8 planes of 3D torus

● Ran on 4864 nodes in dedicated mode

● Best results: 3% faster than grid_order placement

35

Remarks on Topaware

2/27/2013

● NO application modifications are required for Topaware

● Set MPICH_RANK_REORDER_METHOD to 3

● aprun –L`cat node_list` …

● This goes beyond Craypat/grid_order rank reordering:

● We pick which nodes to use

● We make sure that neighboring tiles (all processes on a node) in the

MPI Cartesian topology are placed on near-neighbor hubs on the torus

● We control more precisely how ranks are placed on nodes

36

FAQ

2/27/2013

● How am I able to make these plots of nodes on BW?
● VMD, a visualization package for molecules

● Input node lists (used by job, etc.) with torus coordinates

● How do I know which nodes my job ran on?
● Use checkjob, as described above

● How can the program tell which ranks are on which
nodes?
● I have an example program that does this

● Makes use of “rca” system library

● How can I get the torus coordinates from the node IDs?
● I have scripts and executables that you can use

● Makes use of xtdb2proc command

● What is the best way to contact me?
● Email rfiedler@cray.com

37

